

Printed Page: 1 of 2 Subject Code: KEE303

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2021-22 **BASIC SIGNALS & SYSTEMS**

Time: 3 Hours Notes:

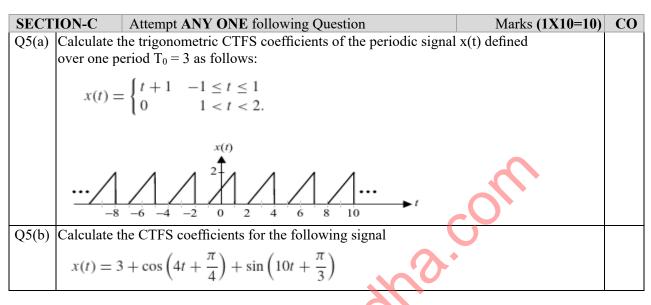
Total Marks: 100

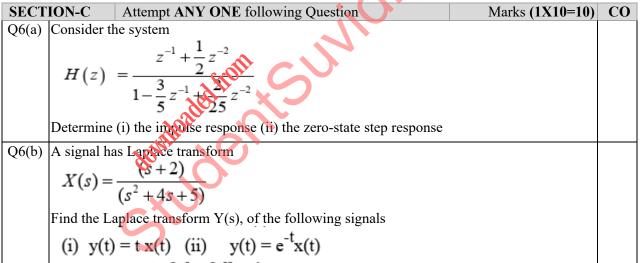
- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly. •

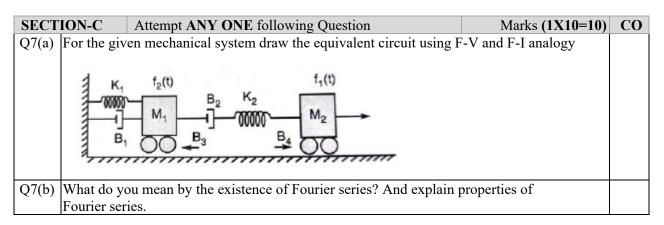
-	ION-A	Attempt All of the following Questions in brief	Marks (10X2=20)	CO	
		• • • •	Warks (10A2-20)	CU	
	Define CT signals. Define unit step, ramp and delta functions for CT				
	Define odd and even signal				
	Define linear and non-linear systems				
	Define time invariant and time varying systems				
	Define Static and Dynamic system				
	Check whether the given system is causal and stable				
	y (n) = $3 x (n-2) + 3 x (n+2)$				
	What is the Laplace transform of (a) $e^{-at} \sin \omega t u(t)$				
	A signal $x(t) = \cos 2\pi$ ft is passed through a device whose input –output is related by				
	$y(t) = x^{2}(t)$. What are the frequency components in the output				
Q1(j)	Define the	Fourier transform pair for continuous time signal.			
SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)	CO	
Q2(a)	(i) Obtain	the Fourier transform of $x(t) = e^{-at}u(t)$, $a > 0$.			
	(ii) Find the Laplace transform of signal u(t).				
	(iii) Find the Laplace transform of the signal.				
	$\mathbf{x}(t) = -\mathbf{t}\mathbf{e}^{-2t} \mathbf{u}(t)$				
	(iv) List so	me properties of continuous-time Fourier transform			
Q2(b)					
~ ~ ~ /	(ii) Find the unit step response of the system given by				
	h(t) = (1/F)	RC). $e^{-t/RC}$ u(t)			
O2(c)	(i) What is the transfer function of a system whose poles are at -0.3±j 0.4 and a zero at -0.2				
		e Existence of PTFT	5		
Q2(d)		ate the initial and final values of the functions $x_1(t), x_2(t), w$	hose Laplace transforms		
		cified below:	•		
	-	10 ¹¹ 1113			
		$\mathbf{W}_{1}(s) = \frac{s+3}{s(s+1)(s+2)}$ with ROC R_{1} : Re $\{s\} > 0$;			
	(i)	3(3 + 1)(3 + 2)			
		s+5			
		$X_2(s) = \frac{s+5}{s^3+5s^2+17s+13}$ with ROC R_2 : Re{s}	> -1;		
	(ii)	$s^{3} + 3s^{2} + 1/s + 13$			
Q2(e)					
	(ii) State ar	nd prove time shifting and differentiation properties of Z	transform.		

SECTION-0	C Attempt ANY ONE following Question	Marks (1X10=10)	CO		
Q3(a) Deter	3(a) Determine if systems with the following impulse responses:				
	(i) $h(t) = \delta(t-2)$,				
(ii) h($(ii) h(t) = \delta(t) - \delta(t-2),$				
are in	are invertible.				
Q3(b) Calcu	Calculate the inverse Laplace transform of right-sided sequences with the following transfer				
functi	ons:				
$X_1(s$	$s = \frac{s+3}{s(s+1)(s+2)}$				

SECTION-C Attempt ANY ONE following Question Marks (1X10=10) CO


Download all NOTES and PAPERS at StudentSuvidha.com




Roll No:

(SEM III) THEORY EXAMINATION 2021-22 BASIC SIGNALS & SYSTEMS

Q4(a)	Calculate the unilateral Laplace transform for the following functions:		
~ ` ` /	(i) unit impulse function, $x_1(t) = \delta(t)$;		
	(ii) unit step function, $x_2(t) = u(t)$		
Q4(b)	Calculate the Fourier transform of the following functions:		
	(i) unit impulse sequence, $x_1[k] = \delta[k]$;		
	(ii) decaying exponential sequence, $x_3[k] = p^k u[k]$ with $ p < 1$.		

Download all NOTES and PAPERS at StudentSuvidha.com